Efficient likelihood computations with nonreversible models of evolution.
نویسندگان
چکیده
Recent advances in heuristics have made maximum likelihood phylogenetic tree estimation tractable for hundreds of sequences. Noticeably, these algorithms are currently limited to reversible models of evolution, in which Felsenstein's pulley principle applies. In this paper we show that by reorganizing the way likelihood is computed, one can efficiently compute the likelihood of a tree from any of its nodes with a nonreversible model of DNA sequence evolution, and hence benefit from cutting-edge heuristics. This computational trick can be used with reversible models of evolution without any extra cost. We then introduce nhPhyML, the adaptation of the nonhomogeneous nonstationary model of Galtier and Gouy (1998; Mol. Biol. Evol. 15:871-879) to the structure of PhyML, as well as an approximation of the model in which the set of equilibrium frequencies is limited. This new version shows good results both in terms of exploration of the space of tree topologies and ancestral G+C content estimation. We eventually apply it to rRNA sequences slowly evolving sites and conclude that the model and a wider taxonomic sampling still do not plead for a hyperthermophilic last universal common ancestor.
منابع مشابه
Option Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملThe Effect of Nonreversibility on Inferring Rooted Phylogenies.
Most phylogenetic models assume that the evolutionary process is stationary and reversible. In addition to being biologically improbable, these assumptions also impair inference by generating models under which the likelihood does not depend on the position of the root. Consequently, the root of the tree cannot be inferred as part of the analysis. Yet identifying the root position is a key comp...
متن کاملSimulation-based likelihood approach for evolutionary models of phenotypic traits on phylogeny.
Phylogenetic comparative methods (PCMs) have been used to test evolutionary hypotheses at phenotypic levels. The evolutionary modes commonly included in PCMs are Brownian motion (genetic drift) and the Ornstein-Uhlenbeck process (stabilizing selection), whose likelihood functions are mathematically tractable. More complicated models of evolutionary modes, such as branch-specific directional sel...
متن کاملState aggregation for fast likelihood computations in molecular evolution
MOTIVATION Codon models are widely used to identify the signature of selection at the molecular level and to test for changes in selective pressure during the evolution of genes encoding proteins. The large size of the state space of the Markov processes used to model codon evolution makes it difficult to use these models with large biological datasets. We propose here to use state aggregation ...
متن کاملRANKING DMUS ON THE BENCHMARK LINE WITH EQUAL SHADOW PRICES
Data envelopment analysis (DEA) with considering the best condition for each decision making unit (DMU) assesses the relative efficiency for it and divides a homogenous group of DMUs in to two categories: efficient and inefficient, but traditional DEA models can not rank efficient DMUs. Although some models were introduced for ranking efficient DMUs, Franklin Lio & Hsuan peng (2008), proposed a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Systematic biology
دوره 55 5 شماره
صفحات -
تاریخ انتشار 2006